

ОПТИМИЗАЦИЯ УСЛОВИЙ ВИНИЛИРОВАНИЯ МОРФОЛИНА МИРХАМИТОВА ДИЛОРОМ ХУДАЙБЕРДИЕВНА

доктор химических наук,

профессор кафедры «Химическая технология», Алмалыкский филиал Ташкентского Государственного технического университета, Республика Узбекистан, г.Алмалык.

ЖАДИЛОВА ДИЛНАВОЗ АБДУЛАЗАЗОВНА

Студент кафедры «Химическая технология», Алмалыкский филиал Ташкентского Государственного технического университета, Республика Узбекистан, г.Алмалык.

ARTICLE INFO

Received: 11th October 2023 Accepted: 12th October 2023 Online: 12th October 2023

Ключевые слова:

морфолин, гетерогенный катализ, наноструктурный катализ, получения наноструктуры, винилирования, кинетика процесса, энергия активации.

АННОТАЦИЯ.

Разработан метод синтеза N-винилморфолина винилированием морфолина в гомогенных и гетерогенных условиях, а также в присутствии наноструктурных катализаторов на основе активированного угля и гидроксида калия.

В последние годы был достигнут значительный прогресс в создании и изучении свойств модифицированных наноструктурных гетерогенных катализаторов для винилирования органических соединений, имеющих в своем составе активные атомы водорода.

Поэтому нами оптимизированы условия винилирования морфолина и изучено влияние температуры на его протекание в гетерогенной системе, т.е. на выход образующегося при этом N-винилморфолина (табл.1.).

Установленные результаты показывают, что с увеличением температуры в интервале 100-255 °C выход образующегося N-винилморфолина повышается от 10% до 31,7% соответственно. Дальнейшее увеличение температуры приводит к резкому уменьшению выхода синтезируемого продукта, а при 280-285 °C он составляет 19% и 290-300 °C - 12%.

Таблица 1.

Влияние температуры на винилиро	рацие морфолица
Блияние температуры на винилиро	вание морфолина

_			1 11			•
	$N_{\underline{0}}$	Темпера-тура,	Выход	$N_{\underline{0}}$	Темпера-тура, °С	Выход
	Π/Π	$^{\circ}\mathrm{C}$	N-винилморфо-лина,	Π/Π		N-винилморфо-лина,
			%			%
	1	65 - 70	-	6	210 – 215	23,2
-	2	100 - 105	10,6	7	225 - 230	25,0
	3	120 – 125	18,4	8	250 – 255	31,7
	4	140 – 160	19,8	9	280 - 285	19,0
	5	180 - 190	21,5	10	290 – 300	12,0

Структура синтезированного N-винилморфолина доказана ИКспектроскопическим методом.

В ИК-спектре N-винилморфолина (рис.1.) наблюдаются следующие полосы: 1520-1610 см⁻¹ валентные колебания С=С связи винильной группы, 1050-1250 см⁻¹ валентные колебания С-О-С фрагмента молекулы морфолина, 2950-2960 см⁻¹ – симметричное и асимметричное колебания метиленовой группы.

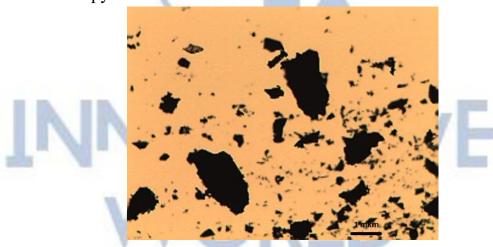


Рис.1. Микроскопический снимок исходного активированного угля.

Установленные экспериментальные результаты показали, что катализатор КОН/активированный уголь обладает достаточной активностью при синтезе N-винилморфолина гетерогенно-каталитическим винилированием морфолина ацетиленом.

Для разработки каталитических систем реакции ацетилена морфолином нами получены наноструктурные матрицы активированного угля. Было выявлены исходные размеры активированного угля, который использований как носитель катализатора для синтеза N-винилморфолина реакцией ацетилена с морфолином [1]. Размер частицы, основного количества активированного угля составляет 1-3 мкм (рис.1).

Проведен дисперсионный анализ методом микроскопии, с целью уменьшения размера частиц активированного угля до фракционирования образцов подвергали ультразвуковой обработке. Для этого готовили водную суспензию активированного угля (150 мл H_2O :5 г активированного угля) и подвергали ультразвуковой обработки в режиме 0,6 A, 38 кГц в течение 60 минут. В интервале каждый 3 минут останавливали и 30 секунд охлаждали стакан в ледяной воде. Фракцию в течение 10, 20, 30, 40, 60 минут отбирали пробы и определяли размеры частиц методом микроскопии [2,3].

На рис. 2. приведены микроскопические снимки образцов активированного угля обработанного ультразвуковом диспергатором с ценой деления 1 мкм.

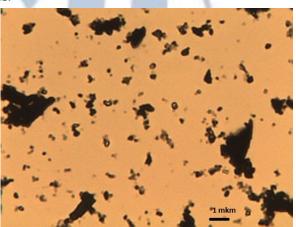


Рис.2. Микроскопический снимок ультразвуковой диспергирированной частицы активированного угля в течение 10 минут.

Анализ полученных результатов показал, что при этом размер диспергирированной частицы активированного угля составляет 700-900 нм. Определение седиментационного фракционирования частицы активированного угля в течение 20, 30, 40 и 60 минут показало, что в изучаемых интервалах времени существенно изменяются их размеры. Размер полученной фракции после 20 минутного диспергирования составляет 500-750 нм. Размер частицы фракции после 30, 40, 60 минутного диспергации соответственно составляет 300-550, 200-320, и 200-250 нм. Полученные данные приведены в таблице 2.

Таблица 2. Влияние времени диспергации на размер частицы активированного угля

№	Время диспергации,	Размер частицы
	мин.	активированного угля
1.	-	1-3 мкм
2.	10	700-900 нм
3.	20	500-750 нм
4.	30	300-550 нм
5.	40	200-320 нм
6.	60	200-250 нм

Таким образом, результаты дисперсионного анализа методом микроскопии показало, что в установке ультразвукового диспергатора УЗДН2Т. С диспергированием суспензии активированного угля с водой можно достичь размера частицы активированного угля до 200-250 нм в течении 60 минут. Увеличение времени диспергации не влияет на размеры частиц.

Было изучено гетерогенно каталитическая реакция ацетилена морфолином с участием катализатора на основе нанострукторного активированного угля с размером частиц 200-250 нм. Условия проведения реакции придерживали как проведенных в присутствии катализатора активированного угля /КОН. Количества гидроксида калия в составе катализатора составляет 30 масс.%. Исследовано влияние температуры на реакцию ацетилена с морфолином в гетерогенных условиях в присутствии катализатора, приготовленного на основе активированного угля с размером частицы 200-250 нм. Выявлено, что в данном процессе также синтезируются 280° C N-винилморфолин И его выход при температурах 260 соответственно составляет 25,6 и 20,4%.

Анализ полученных данных показывает, что для реакции ацетилена с морфолином в присутствии катализатора на основе монострукторного активированного угля с размером частиц 200-250 нм оптимально при температуре 240°C при этом выход N-винилморфолина составляет 38,2%.

Таким образом, исследованы гетерогенные каталитические реакции ацетилена с морфолином в присутствии катализаторов активированного угля АУ-L/КОН и наноструктурного активированного угля /КОН. При этом показано, что в обоих случаях образуется N-винилморфолин. Активность катализатора на основе наноструктурного активированного угля больше чем катализатора на основе активированного угля АУ-L. Выход N-винилморфолина в их присутствии соответственно составляет 38,2 и 31,7%.

ЛИТЕРАТУРА

- 1. J.D.Mackenzie, E.Bescher. Chemical Routes in the Synthesis of Nanomaterials Using the Sol–Gel Process. Acc. Chem. Res. 2007. №40. P. 810.
- 2. Olim Ruzimuradov, Suvonkul Nurmanov, Mirabbos Hojamberdiev, Alexander Gurlo, Joachim Broetz, Ralf Riedel., Preparation and characterization of macroporous TiO₂-SrTiO₃ heterostructured monolitic photocatalust, Journal Materials Letters 116, 2014, 353-355.
- 3. Olim Ruzimuradov, Suvonkul Nurmanov, Mirabbos Hojamberdiev, Alexander Gurlo, Joachim Broetz, Ralf Riedel., Fabrication of nitrogen-doped TiO₂ monolith with well-defined macroporous and bicrystalline framework and its photocatalytic performance under visible light, Journal of the European Ceramic Society, 34, 2014, 809-816.

